1 research outputs found

    Modulation of cytotoxic responses by targeting CD160 prolongs skin graft survival across major histocompatibility class I barrier

    No full text
    CD160 is a glycosylphosphatidylinositol-anchored protein of the immunoglobulin superfamily. It exhibits a pattern of expression coincident in humans and mice that is mainly restricted to cytotoxic cells and to all intestinal intraepithelial T lymphocytes. B- and T-lymphocyte attenuator (BTLA) and CD160 interact with cysteine-rich domain 1 of the extracellular region of Herpesvirus entry mediator (HVEM). CD160 engagement by HVEM can deliver inhibitory signals to a small subset of human CD4 T cells and attenuate its proliferation and cytokine secretion, but can also costimulate natural killer cells or intraepithelial lymphocytes. In turn, CD160 and BTLA can also function as agonist ligands being capable of costimulating T cells through membrane HVEM. Based on the restricted pattern of CD160 expression in cytotoxic cells, we postulated that CD160 may represent a suitable target for immune intervention in the setting of transplantation to modulate allogeneic cytotoxic responses. We demonstrated that in vivo administration of anti-CD160 antibody in combination with anti-CD40 L antibody to limit CD4 T-cell help modulated cytotoxic responses in a major histocompatibility complex class I mismatched model of allogeneic skin graft transplantation (bm1 donor to C57BL/6 recipient) and significantly prolonged graft survival. The implementation of this strategy in transplantation may reinforce current immunosuppression protocols and contribute to a better control of CD8 T-cell responses
    corecore